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Abstract 
An analytacal model f o r  the  performance analysts 

o f  a novel anput access scheme f o r  a n  ATM swatch 
as developed and presented an thas paper T h e  anter- 
connectaon network of the  ATM swatch as anternally 
nonblockany and each anput port  mazntaans a separate 
queue f o r  each output por t  so as t o  reduce the head- 
of-lane (HOL) blockzng of conventzonal anput queuany 
swatches Each  anput as allowed t o  send only one  cell 
per  tzme slot, and each output  por t  as allowed to  re- 
cezve only one cell per  t zme slot. Usang a tagged queue 
approach, a n  analytacal model wath a n  underlyang two- 
damenszonal Markov c h a m  wath a state space of saze 
(Queue Capacaty x swatch szze) as constructedfor eval- 
uatang the swatch performance under  a.a.d Bernoullz 
traffic for dafferent offered traffic loads T h e  swatch 
throughput, mean  cell delay, and cell loss probabdaty 
are computed f r o m  the analytacal model. T h e  accuracy 
of the analytzcal model zs vemfied usang samulatzon. 

1 Introduction 
Input-queueing schemes have received a lot of 

attention in implementing high bandwidth ATM 
switches because of their simplicity in implementa- 
tion However they suffer from the well-known head of 
line (HOL) blocking problem which limits the switch 
throughput to a maximum of 58 6% [l] One approach 
to overcome this problem is for each input port to 
maintain a separate queue of cells destined for each 
output port [a, 3, 4, 51 (see Figure 1). During a sin- 
gle time slot, a maximum of one cell per input port 
can be transferred, and a maximum of one cell per 
output port can be received. The selection of the cell 
from an input to transmit during a time slot to an 
output is accomplished using a scheduling algorithm. 
Of particular interest to us in this paper is an iterative 
matching algorithm named parallel ateratzve matchzng 
(PIM) [2] which finds the maximal matching between 
the inputs and outputs of the switch. This switch 
architecture has received a lot of attention from the 

research community, and commercial switches based 
on this queueing technique such as the DEC Systems 
AN2 switch [a] have already been built. 

2 
L switching 
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N 

Figure 1: Architecture of the multiple input queues 
ATM switch ( N  x N ) .  

Performance evaluation of the PIM switches ap- 
pearing in the literature so far have been based on 
simulation. A cell loss probability requirement of lo-’ 
is not uncommon for an ATM switch, and estimating 
the rare cell loss probability by simulation is inefficient 
and sometimes impossible [6]. Consequently, analyt- 
ical models are of great importance in sohing these 
problems. 

In this paper we develop an analytical model of the 
PIM switch with finite input buffers using the tagged 
queue approach [7, 91 and verify the accuracy of the 
results using simulation. The remainder of this paper 
is organized as follows. Section 2 introduces the PIM 
scheduling algorithm. Section 3 develops the analyti- 
cal model of PIM switches under i.i.d Bernoulli traffic 
based on the tagged queueing approach. Numerical re- 
sults obtained from the analytical model are presented 
in Section 4 and compared with the results from sim- 
ulation. Finally Section 5 gives the conclusions. 

2 Parallel Iterative Matching 
The PIM algorithm proposed by Anderson e t  al. 

[2] uses parallelism, randomness, and iteration to find 
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a maximal matching between the inputs that have 
queued cells for transmission and the outputs that 
have queued cells (at the inputs) destined for them. 
Interested readers may refer to  [2, 3, 41 for details. 

To facilitate the analysis of the PIM algorithm in 
the rest of the paper, we modify the original PIM al- 
gorithm as follows. The modified PIM algorithm iter- 
ates the following two steps until a maximal matching 
is found or until a fixed number of iterations are per- 
formed: 

1. Each unmatched input chooses an output ung- 
fomly  over all unmatched outputs for which it 
has queued cells and sends a request to it. 

2. If an unmatched output receives any requests, it 
chooses one uniformly over all requests to  grant 
and notifies each requesting input. 

The two algorithms are logically equivalent for the 
purpose of analysis. 

3 Queueing Model and Analysis of 
Multiple Iterations PIM 

The concept of tagged input queue has been success- 
fully used to  evaluate the FIFO input-queued switch 
model [7, 91. As observed from the algorithm descrip- 
tion of PIM, a HOL cell in an input queue will con- 
tend for transmission not only with the HOL cells of 
the same input, but also the HOL cells destined for 
the same output. This two stages contention process 
of PIM complicates our model when compared to  the 
models in [7, 91. The PIM switch model is developed 
under the following assumptions: 

1. The switch operates synchronously. 

2. Every input queue has the same buffer size, b,. 

3. Cells arrive at the inputs according to  an i.i.d 
Bernoulli process with parameter NX and the 
cells' destinations are uniformly distributed over 
all the outputs. 

4. New cells arrive only at the beginning of the time 
slots, and cells depart only at the end of the time 
slots. 

Under the above assumptions, all the input queues 
will exhibit the same behavior when the system at- 
tains steady state. Let Q ( i , j )  denote the queue at 
input i which contains cells with output j as the des- 
tination. Figme 2 shows im example of the queue- 
ing model for the PIM switch where the occupancy 
of Q(1,l)  is taken as the tagged input queue, and the 
number of HOL cells at input 1 is represented by the 
1st HOL input queue. 

Figure 2: An example of the queueing model for the 
PIM switch. 

3.1 Markov Model 
The queueing model is analyzed by considering 

the underlying Markov chain 2 whose states are ex- 
pressed as a couplet (l,wi), where I, w,, are the 
lengths of the tagged input queue and virtual HOL 
input queue, respectively, at the end of a time slot. 
The states space of this two-dimensional Markov chain 

are ordered in a lexicographic order, that is, (O,O), 
(l,l), (1,2) ,... (2,l) ,... ( b , , N ) .  This Markov chain is a 
Quasi Birth and Death (QBD) process having a block- 
partitioned form of transition probability matrix: 

is { ( O , O ) , ( l , w ) } ,  (1 5 1 5 b z , l  5 w1 5 N )  and 

T =  

where A; t Aie = 1 and Ab + Ale + Aze = 
(A0 + A I  + Az)e = e with e = [l,l,l, ..., 1]*. 
Let denote 
the probability that the HOL cell of a tagged queue 
is blocked/transmitted given that the remaining HOL 
cells of the last time slot is wi and the remaining HOL 
cells at the end of the current time slot is w:. De- 
fine B as a N x N matrix whose element at position 
(T ,c )  is given by P~,,,W,(~)~~~-,(~). Similarly, BO is de- 
fined ils an l x N matrix whose elements at position 
(1,c) is P~,,,w,(,)~w,-~(o). Also define S as a N x N 
matrix whose element at position (r ,c)  is given by 
Psuc,wt(c)~wt-l(,.). Similarly, SO is the probability that 
the HOL cell of the tagged input queue gets matched 
given that the tagged mput queue is empty at the end 
of the last time slot. Here Se+Be = e and So+Boe =r 

1. Then, Ab = (1 - X)Se, A; = (1 - A) + XSo, 

and A2 = AB. 

PblO,W* (w:)I wt- 1 (w,) lPsuc,wt (wi) I w*- 1 (w,) 

Ai = XBo,  A0 = (1 - X)S, A1 = AS + (1 - X)B, 
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The remaining subsections show the compu- 
tation of the success and blocking probabilities, 

tively. 
3.2 

Pmc, wr (U:) 1 Wt- 1 (w* ) and ho ,w ,  (w:) j w,- 1 (2u. ) 2 respec- 

Computing the Blocking and Success 
Probabilities 

The transition of the state of the virtual HOL input 
queue from the state w, to state w: is a two-steps 
process illustrated in Figure 3.  

W ;  Y hz - 
Arriving NOL PIM algorithm 
cells k,  to find maximal 

matching 

Figure 3: Transition of the virtual HOL input queue. 

P s v c i ~ ( h , )  := Prob{the HOL cell at the tagged aput  
queue gets transmitted, and Wt(w:) = Hi(h,-l) gaven 

Given T, = w: - w,, the blocking probability 
that Ht (h,)} 

pbiu,Wt (w: ) 1 +Vx -1 (w, ) is computed as: 

U K ( r ,  1 I w ( w1 ) Pblo-OIH( w: ) 
1 

+aK(r< +1) IM'(w,? Pblo-1 IH(w:) e, +w, 7 

r,+k w,-1) 
+aK(r,)lW(w,)Pblo-l lH(w:) (1 - ,,+d, -1 

c,+l+lo(w, -1 

3.2.1 Arriving CeIls at the Vir tua l  HOL Input 
Queue 

Let Kt(k,) denote the number of newly arriving HOL 
cells at  the virtual HOL znput queue (k% new arrivals 
to the vertual HOL znput queue), at the beginning of 
the current time slot t. W,-~(UJ,)  denotes the num- 
bers of remaining HOL cells at the vzrtual NOL zn- 
put queue (w, is length of virtual HOL input queue), 
at the end of the previous time slot t - 1. Let 

pp.ab(Kt(k,)l'Wt-1(1Li2)). A cell that arrives at Q(z ,J )  
when Q(i,3) is empty, will observe that another queue 
is non-empty with probability p 1  and let po = 1 - p l .  
Hence, 

H t ( h )  = &(k)  -t Wt-lW. Define, a ~ ( k . ) l w ( ~ , )  = 

We define the following probabilities associated with 
the transitions: 

Pblu-OIff(h,) := Prob{the HOL cell at the tagged z n p t  
queue gets blocked, and Wt(w:) = Ht(h,) gwen that 

P(,lo-ljH(h,) := Prob{the H0.L cell a t  the tagged input 
queue gets blocked, and Wt(w:) = Ht (h, - 1) given  tha t  

W h d )  

Ht(hJ1  

in which 
f o r w = O  

in\ 
('I 

and Pl1 in Eq (2) is the probability that an input queue 
length is equal to 1 (there is only one buffered cell in 
this input queue) during a time slot, and is given by: 

The transition probabilities P&-O(N(h,), Pblo-l[H(h,) 

and Psuclff(h,) defined above is computed by consid- 
ering the transition probabilities for each iteration of 
the PIM scheduling algorithm. For the 4 t h  iteration, 
following parameters are defined: 

n(4)=the nuniber of unmatched inputs/outputs 
at the beginning of 4th iteration 

h,(4)=the number of non-empty queues in input 
i at the beginning of 4th iteration, whose 
outputs are still unmatched 

m(+)=n($) - n(4 f 1) 
Qh(4)=ht(#J) - h(#J + 1) 
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Given (4+)7ha(+),ho(+)) and (n(+ + l),ha(+ + 
l), ho($ + l)), we derive the following blocking proba- 
bilities Pblo3:z: loz, and successful probability Psucl~~. 
Here the subscript blo means that at  the end of cur- 
rent iteration, the HOL cell at  the tagged input queue 
Q(i, j )  gets blocked; and Ox3/x:x!, represents whether 
input i and output j remain unmatched (represented 
by 0) or get matched (represented by 1) at  the begin- 
ning/end of the current iteration, x3, xi, xi E {0 ,1 ,2 } .  
For convenience, the following two functions of po are 
defined: 

n-1 inpts < 

1-POn 
Psucl = - n 

n-1-m outpuls 

m outputs 

Annciation: 
0-input i 

0 - o q u ~ j  

e’ 8 

Figure 4: Diagram for derivation Of Pblo-00100 

Let t ( m  5 t 5 n - 1 )  be the number of queues ex- 
cluding the queue from input i that succeed in the first 
stage of contention, and m is the number of outputs 
contended by that t inputs. Figure 4 shows the situa- 
tion where output j remains unmatched at  the end of 
the current iteration. There are two sub-problems to 
be considered in computing the transition probabili- 
ties: 

1. 

2.  

What is the probability that t inputs contend for 
m outputs? 

What is the probability that Ah, out of h, out- 
puts whose corresponding queues in input i are 
non-empty get matched? 

The derivation below considers each of the sub- 
problems in computing the transition probabilities. 

Computing Pblo-~o~oo: From Figure 4, given t and 
m, the probability that input i gets blocked is 

Among these m outputs, Ah, of them will see their 
corresponding queues in input a being non-empty. The 
number of combinations satisfying this condition is 

Knowing the above probabilities, Pblo-00100 can be 
easily computed as 

Computing Pblo-12100: In this case, input i is 
matched. The probability is given by 

1 
pblo-12100 = (l - -)Psuc2 ha 

Computing P ~ ~ o - ~ l l o ~ :  In this case, output j gets 
matched while input i remains unmatched. Only the 
aggregated probability over the set of possible Ah, is 
counted. There are two candidate transition paths 
depending on whether Q(i, j )  survives the first stage 
of contention or not. Therefore Pb,o-01100 is a sum of 
two probabilities: 

Pblo-Ol100 = Pblo-Ol-BlOO + Pblo-Ol-S100 

where Pblo-Ol-B100 and Pbloc-OLS100 are the probabil- 
ities for the two candidate transition paths, respec- 
tively. 

n-I 

where, 

( h i - ’ ) (  n - h i )  
A h i - 1  m - A h i  CAh, lblo-01-S-00 = 

If output j has been matched, it should be relatively 
easy to find: 
Computing pblo-01101: 
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4 Numerical Results 
Figure 5 shows the switch throughput as function 

of offered load X for PIM switch sizes 8 and 16 with for 
different number of PIM iterations respectively. Un- 
der high offered load (greater than 60% when maxi- 
mum iteration is l ) ,  the throughput of the switch d e  
creases when the switch size increases. As more HOL 
cells get matched during each iteration, the saturation 
throughput will increase as the number of iterations 
increases. The figures show that three iterations are 
sufficient to get a high throughput (> 90%). 

Pblo-12101 = p s v c 2  

Computing Psucloo: Finally, Psvc~oo is given as, 

psuclOO = - (Pblo-OOIOO f pblo-O1lOO + pbl0-12jOO) 
The state transition path can be expressed as a 

weighted tree of depth d ,  where d is the maximum 
number of iterations and the weight is the proba- 
bilities, the states { blo-00, blo-01, blo-12, suc} are 
the leaves and the iteration numbers are the levels. 
To search the entire tree according to desired states' 
leaves and compute the weight of paths, we get the 
blocking probabilities &o-OIH(h,) = Pblo-OOIH(h,) + 
the successful probability Psuc l~(h , ) .  
3.3 Solving the Markov Chain 

Using Matrix-Geometric solution method [SI for the 
Markov chain the steady state probabilities are given 
by: 

Pblo-OllH(h,) and Pblo-llH(h,)  = Pblo-lZIH(h,) as we11 as 

b,-1 

To = 1/(1 + c y  p"'e + ~ , B ~ * - ~ A B ( I  - Bj-lej 
1=1 

, f o r O < l < b ,  
W = { ~~~$ '2 ,1 ,B( I  - B1-l , fo r  1 = b, 

where e = [l, 1 , 1 , .  . . ,1lT, I is the identity matrix, 
Il  = ee l ,  e l  = [I,O,O,. . . ,O] ,  cy = XBo(I - XI1  - (1 - 
X)B)-l, and ,B = XB((1 - X ) ( I  - B))-l .  Notice that 
for steady state, the following equation should hold 

Po = (1 - A b 0  

This naturally suggests an iterative solution [9]. 
3.4 Computing the Performance Metrics 

Let p, Q, D and P,,,, be throughput, mean queue 
length, mean cell delay and mean cell loss probability 
respectively, then 

b ,  N 

p = XTo(1- 
1=1 u=l 

(a) 8 x 8 switch (b) 16 x 16 switch 

Figure 5: The throughput of the PIM switch as a func- 
tion of offered load with a buffer size b,=10. 

(a) 8 x 8 switch (b) 16 x 16 switch 

Figure 6: The mean cell delay of the PIM switch as a 
function of offered load with a buffer size 6,=10. 

Figure 6 shows the mean cell delay as a function 
of offered load X for the switch sizes 8 and 16 for 
different number of PIM iterations. The figures in- 
dicate that the mean cell delay increases as the switch 
size increases and also as the offered load increases. 
But when the number of PIM scheduling iterations 
is increased, even from 1 to 2, the mean delay in- 
creased slowly with the traffic load as compared with 
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the case of just one iteration. For single iteration PIM 
scheduling, the mean cell delay increases dramatically 
when the offered load exceeds SO%, which indicates 
that PIM switches with single iteration PIM schedul- 
ing will be overloaded when the traffic load is greater 
than 60%. However, for 2 and 3 iteration PIM, this 
overloaded trafic point is about 0.8. This phenomenon 
can also be observed in figure 5. Notice that when the 
traffic load is extremely low, such as 0.1, all curves co- 
incide. Under low traffic load, the case for more than 
one HOL cell contending for a common input/output 
is very low such that single iteration PIM scheduling is 
typically sufficient to find a maximal matching. How- 
ever, when the traffic load increases, the chances of 
conflicts increase and more iterations are needed for 
using PIM to attain maximal matching. 

From the figures for throughput and mean cell de- 
lay, it can be seen that our queueing model gives some- 
what optimistic results than simulation under high of- 
fered load. 

Figure 7: The mean cell loss probability of a PIM 
switch, as a function of offered load, with a buffer size 
bi=lO.  

In figure 7, the mean cell loss probabilities of PIM 
switches with queue size of 10 cells are given as a func- 
tion of offered load. It can be seen that, for a medium 
size PIM switch with 3 iterations PIM scheduling 
(such as 16-by-16) with traffic load less than sa%, a 
buffer size of 10 cells per queue is sufficient to guaran- 
tee a cell loss probability < 
5 Conclusions 

The proposed queueing model provides a general 
method for analyzing non-blocking ATM switches 
with multiple input queues in terms of throughput, 
mean queue length, mean cell delay, and mean cell 
loss probability given the switch size, queue buffer 
size, and offered load (i.i.d Bernoulli arrivals). The 
results from the analytical model match closely with 
the simulation results. This model will be extended 
in the future for more realistic traffic patterns such as 

bursty and correlated traffic. The analysis procedure 
developed in this paper is considered as the founda- 
tion for solving the more difficult problem involving 
bursty and correlated traffic [lo]. 
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